337455(37)

B. E. (Fourth Semester) Examination, April-May 2020

(New Scheme)

(Mech. & Production Branch)

NUMERICAL ANALYSIS & COMPUTER PROGRAMMING (C & C++)

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each question is compulsory and carries 2 marks.

Attempt any two parts from (b), (c) and (d) which carry 7 marks each.

Unit-I ()dunal)

1. (a) Round off the numbers 865250 and 37.46235 to four significant figures and compute E_a , E_p , in each case.

- (c) Find a real root of the equation $x^3 2x 5 = 0$ by the method of false position connect to three decimal places.
- (d) Apply Gauss elimination method to solve the equations x + 4y z = -5; x + y 6z = -12; 3x y z = 4.

Unit-II

- 2. (a) Reduce the pattern $y = ae^{bx}$, where a and b are constant, into a linear law of the form y = mx + c. 2
 - (b) R is the resistant to motion of a train at speed V; find a law of the type $R = a + bV^2$ connecting R and V, using the following data:

V (km/hr) : 10 20 30 40 50

R (kg/ton): 8 10 15 21 30

[3]

(c) From the following table, estimate the number of students who obtained marks between 40 and 45:

Marks : 30-40 40-50 50-60 60-70 70-80

No. of students: 31 42 51 35 31

(d) Interpolate by means of Gauss's backward formula, the population of a town for the year 1974, given that:

Year : 1939 1949 1959 1969 1979 1989

Population : 12 15 20 27 39 52

(in thousands)

7

Unit-III

- 3. (a) Write the Trapezoidal formula for numerical integration.
 - (b) Given that:

 $x : 1.0 \quad 1.1 \quad 1.2 \quad 1.3 \quad 1.4 \quad 1.5 \quad 1.6$

y : 7.989 8.403 8.781 9.129 9.451 9.750 10.031

Find
$$\frac{dy}{dx}$$
 at $x = 1.1$.

7

7

- (c) Evaluate $\int_0^6 \frac{dx}{1+x^2}$ by using (i) Trapezoidal rule;
 - (ii) Simpson 1/3 rule.

(d) Apply Runge-Kutta method to find approximate value of y for x = 0.2, in steps of 0.1, if

$$\frac{dy}{dx} = x + y^2, \text{ given that } y = 1 \text{ where } x = 0.$$

Unit-IV

4. (a) Classify the following equation:

$$\frac{\partial^2 u}{\partial x^2} + 4 \frac{\partial^2 u}{\partial x \partial y} + 4 \frac{\partial^2 u}{\partial y^2} - \frac{\partial u}{\partial x} + 2 \frac{\partial u}{\partial y} = 0$$

(b) Solve by relaxation method, the Laplace equation

$$\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$
, inside the square bounded by the

lines x = 0, x = 4, y = 0, y = 4, given that $u = x^2y^2$ on the boundary.

(c) Find the values of
$$u(x, t)$$
 satisfying the parabolic

equation
$$\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$$
 and the boundary conditions

$$u(0, t) = 0 = u(8, t)$$
 and $u(x, 0) = 4x - \frac{1}{2}x^2$ at

the points

$$x = i$$
; $i = 0, 1, 2,7$ and

$$t = \frac{1}{8}j$$
; $j = 0, 1, 2,5$

(d) Evaluate the pivatal values of the equation $u_{tt} = 16 u_{xx}$ taking $\Delta x = 1$ upto t = 1.25. The boundary conditions are u(0, t) = u(5, t) = 0, $u_{tt}(x, 0) = 0$ and $u(x, 0) = x^{2}(5 - x)$.

Unit-V

(b) Explain decision making and loop statements used in 'C' programming.

7

2

7

(c) List various arithmatic, relational and logic	al
operators in 'C'.	
(d) Write a 'C' programme to generate a series 1,	8,
27, 64, upto ten terms.	
Evaluate the pivatal values of the ugustion.	
$v_{\rm pr} = 16 \ v_{\rm err}$ galang $ {\bf x} = 1 \ {\rm aps} \ r = 1.25 \ {\rm Flux}$	
V-tin/I_	

337455(37)

100]